Effect of inlet valve timing and water blending on bioethanol HCCI combustion using forced induction and residual gas trapping
نویسندگان
چکیده
It has been shown previously that applying forced induction to Homogeneous Charge Compression Ignition (HCCI) of bioethanol with residual gas trapping, results in a greatly extended load range compared to normal aspiration. However at very high boost pressures, very high cylinder pressure rise rates develop. The approach documented here explores two ways that might have an effect on combustion in order to lower the maximum pressure rise rates and further improve the emissions of oxides of nitrogen (NOx); inlet valve timing and water blending. It was found that there is an optimal inlet valve timing. When the timing is significantly advanced or retarded away from the optimal, the combustion phasing could be retarded for a given lambda (excess air ratio). However, it would result in higher loads and lower lambdas for a given boost pressure, with possibly higher NOx emissions. Increasing the water content in ethanol gave similar results as the non-optimal inlet valve timing.
منابع مشابه
Studying the Effect of Reformer Gas and Exhaust Gas Recirculation on Homogeneous Charge Compression Ignition Engine Operation
Combustion in homogeneous charge compression ignition (HCCI) engine is controlled auto ignition of well-mixed fuel, air and residual gas. Since onset of HCCI combustion depends on the auto ignition of fuel/air mixture, there is no direct control on the start of combustion process. Therefore, HCCI combustion becomes unstable rather easily especially at lower and higher engine load. Charge strati...
متن کاملReformer Gas Application in Combustion Onset Control of HCCI Engine
Homogenous charge compression ignition (HCCI) combustion is spontaneous multi-site combustion of a nominally premixed air/fuel mixture that exhibits high rate of pressure rise and short combustion duration. To avoid excessive pressure rise rate and knocking, HCCI engines are fueled with highly diluted mixture using a combination of excess air and/or EGR. HCCI combustion is attractive due to ...
متن کاملOperating Range Expansion in a HCCI Natural Gas Engine Using Charge and Thermal Stratification in Combustion Chamber
HCCI operating window has two distinct boundaries of knock at higher load region and misfiring/partial burning at lower load region. Moreover, there is no conventional direct way of controlling combustion timing in an HCCI engine. In this research, experimental study were carried out to investigate the effect of thermal and charge stratification on expansion of the operating range of a natural ...
متن کاملEvaluating the EGR-AFR Operating Range of a HCCI Engine
We present a computational tool to develop an exhaust gas recirculation (EGR) – air-fuel ratio (AFR) operating range for homogeneous charge compression ignition (HCCI) engines. A single cylinder Ricardo E-6 engine running in HCCI mode, with external EGR is simulated using an improved probability density function (PDF) based engine cycle model. For a base case, the incylinder temperature and unb...
متن کاملCombustion Control in Gasoline Hcci Engine with Direct Fuel Injection and Exhaust Gas Trapping
Homogeneous charge compression ignition (HCCI) seems to be the most promising solution for gasoline engines in the light of future emissions regulations. This novel combustion technique allows for significant reduction of fuel consumption and engine-out NOX emissions at low and medium engine load/speed conditions. High heat release rate enables realization of the Otto cycle close to ideal, incr...
متن کامل